flair.trainers.plugins.TensorboardLogger#
- class flair.trainers.plugins.TensorboardLogger(log_dir=None, comment='', tracked_metrics=())View on GitHub#
Bases:
TrainerPlugin
Plugin that takes care of tensorboard logging.
- __init__(log_dir=None, comment='', tracked_metrics=())View on GitHub#
Initializes the TensorboardLogger.
- Parameters:
log_dir – Directory into which tensorboard log files will be written
comment – The comment to specify Comment log_dir suffix appended to the default
log_dir
. Iflog_dir
is assigned, this argument has no effect.tracked_metrics – List of tuples that specify which metrics (in addition to the main_score) shall be plotted in tensorboard, could be [(“macro avg”, ‘f1-score’), (“macro avg”, ‘precision’)] for example
Methods
__init__
([log_dir, comment, tracked_metrics])Initializes the TensorboardLogger.
attach_to
(pluggable)Attach this plugin to a Pluggable.
detach
()Detach a plugin from the Pluggable it is attached to.
hook
([first_arg])Convience function for BasePlugin.mark_func_as_hook).
mark_func_as_hook
(func, *events)Mark method as a hook triggered by the Pluggable.
metric_recorded
(record)Attributes
If set, the plugin will be attached to all processes when distributed, not just the main process.
corpus
model
pluggable
trainer
- metric_recorded(record)View on GitHub#
- property attach_to_all_processes: bool#
If set, the plugin will be attached to all processes when distributed, not just the main process.
- get_state()View on GitHub#
- Return type:
dict
[str
,Any
]