flair.trainers.plugins.LinearSchedulerPlugin#
- class flair.trainers.plugins.LinearSchedulerPlugin(warmup_fraction)View on GitHub#
Bases:
TrainerPlugin
Plugin for LinearSchedulerWithWarmup.
- __init__(warmup_fraction)View on GitHub#
Initialize the base plugin.
Methods
__init__
(warmup_fraction)Initialize the base plugin.
after_setup
(dataset_size, mini_batch_size, ...)Initialize different schedulers, including anneal target for AnnealOnPlateau, batch_growth_annealing, loading schedulers.
after_training_batch
(optimizer_was_run, **kwargs)Do the scheduler step if one-cycle or linear decay.
attach_to
(pluggable)Attach this plugin to a Pluggable.
before_training_epoch
(**kwargs)Load state for anneal_with_restarts, batch_growth_annealing, logic for early stopping.
detach
()Detach a plugin from the Pluggable it is attached to.
hook
([first_arg])Convience function for BasePlugin.mark_func_as_hook).
mark_func_as_hook
(func, *events)Mark method as a hook triggered by the Pluggable.
Attributes
attach_to_all_processes
If set, the plugin will be attached to all processes when distributed, not just the main process.
corpus
model
pluggable
trainer
- store_learning_rate()View on GitHub#
- after_setup(dataset_size, mini_batch_size, max_epochs, **kwargs)View on GitHub#
Initialize different schedulers, including anneal target for AnnealOnPlateau, batch_growth_annealing, loading schedulers.
- before_training_epoch(**kwargs)View on GitHub#
Load state for anneal_with_restarts, batch_growth_annealing, logic for early stopping.
- after_training_batch(optimizer_was_run, **kwargs)View on GitHub#
Do the scheduler step if one-cycle or linear decay.
- get_state()View on GitHub#
- Return type:
dict
[str
,Any
]