flair.trainers.plugins.AnnealingPlugin#
- class flair.trainers.plugins.AnnealingPlugin(base_path, min_learning_rate, anneal_factor, patience, initial_extra_patience, anneal_with_restarts)View on GitHub#
Bases:
TrainerPlugin
Plugin for annealing logic in Flair.
- __init__(base_path, min_learning_rate, anneal_factor, patience, initial_extra_patience, anneal_with_restarts)View on GitHub#
Initialize the base plugin.
Methods
__init__
(base_path, min_learning_rate, ...)Initialize the base plugin.
after_evaluation
(current_model_is_best, ...)Scheduler step of AnnealOnPlateau.
after_setup
(train_with_dev, optimizer, **kw)Initialize different schedulers, including anneal target for AnnealOnPlateau, batch_growth_annealing, loading schedulers.
attach_to
(pluggable)Attach this plugin to a Pluggable.
detach
()Detach a plugin from the Pluggable it is attached to.
hook
([first_arg])Convience function for BasePlugin.mark_func_as_hook).
mark_func_as_hook
(func, *events)Mark method as a hook triggered by the Pluggable.
Attributes
attach_to_all_processes
If set, the plugin will be attached to all processes when distributed, not just the main process.
corpus
model
pluggable
trainer
- store_learning_rate()View on GitHub#
- after_setup(train_with_dev, optimizer, **kw)View on GitHub#
Initialize different schedulers, including anneal target for AnnealOnPlateau, batch_growth_annealing, loading schedulers.
- after_evaluation(current_model_is_best, validation_scores, **kw)View on GitHub#
Scheduler step of AnnealOnPlateau.
- get_state()View on GitHub#
- Return type:
dict
[str
,Any
]