flair.models.TextPairClassifier#
- class flair.models.TextPairClassifier(embeddings, label_type, embed_separately=False, **classifierargs)View on GitHub#
Bases:
DefaultClassifier[DataPair[Sentence,Sentence],DataPair[Sentence,Sentence]]Text Pair Classification Model for tasks such as Recognizing Textual Entailment, build upon TextClassifier.
The model takes document embeddings and puts resulting text representation(s) into a linear layer to get the actual class label. We provide two ways to embed the DataPairs: Either by embedding both DataPoints and concatenating the resulting vectors (“embed_separately=True”) or by concatenating the DataPoints and embedding the resulting vector (“embed_separately=False”).
- __init__(embeddings, label_type, embed_separately=False, **classifierargs)View on GitHub#
Initializes a TextPairClassifier.
- Parameters:
label_type (
str) – label_type: name of the labelembed_separately (
bool) – if True, the sentence embeddings will be concatenated, if False both sentences will be combined and newly embedded.embeddings (
DocumentEmbeddings) – embeddings used to embed each data pointlabel_dictionary – dictionary of labels you want to predict
multi_label – auto-detected by default, but you can set this to True to force multi-label prediction or False to force single-label prediction
multi_label_threshold – If multi-label you can set the threshold to make predictions
loss_weights – Dictionary of weights for labels for the loss function. If any label’s weight is unspecified it will default to 1.0
**classifierargs – The arguments propagated to
flair.nn.DefaultClassifier.__init__()
Methods
__init__(embeddings, label_type[, ...])Initializes a TextPairClassifier.
add_module(name, module)Add a child module to the current module.
apply(fn)Apply
fnrecursively to every submodule (as returned by.children()) as well as self.bfloat16()Casts all floating point parameters and buffers to
bfloat16datatype.buffers([recurse])Return an iterator over module buffers.
children()Return an iterator over immediate children modules.
compile(*args, **kwargs)Compile this Module's forward using
torch.compile().cpu()Move all model parameters and buffers to the CPU.
cuda([device])Move all model parameters and buffers to the GPU.
double()Casts all floating point parameters and buffers to
doubledatatype.eval()Set the module in evaluation mode.
evaluate(data_points, gold_label_type[, ...])Evaluates the model.
extra_repr()Return the extra representation of the module.
float()Casts all floating point parameters and buffers to
floatdatatype.forward(*input)Define the computation performed at every call.
forward_loss(sentences)Performs a forward pass and returns a loss tensor for backpropagation.
get_buffer(target)Return the buffer given by
targetif it exists, otherwise throw an error.get_extra_state()Return any extra state to include in the module's state_dict.
get_parameter(target)Return the parameter given by
targetif it exists, otherwise throw an error.get_submodule(target)Return the submodule given by
targetif it exists, otherwise throw an error.get_used_tokens(corpus[, context_length, ...])half()Casts all floating point parameters and buffers to
halfdatatype.ipu([device])Move all model parameters and buffers to the IPU.
load(model_path)Loads a Flair model from the given file or state dictionary.
load_state_dict(state_dict[, strict, assign])Copy parameters and buffers from
state_dictinto this module and its descendants.modules()Return an iterator over all modules in the network.
mtia([device])Move all model parameters and buffers to the MTIA.
named_buffers([prefix, recurse, ...])Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
named_children()Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
named_modules([memo, prefix, remove_duplicate])Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
named_parameters([prefix, recurse, ...])Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
parameters([recurse])Return an iterator over module parameters.
predict(sentences[, mini_batch_size, ...])Predicts the class labels for the given sentences.
print_model_card()This method produces a log message that includes all recorded parameters the model was trained with.
register_backward_hook(hook)Register a backward hook on the module.
register_buffer(name, tensor[, persistent])Add a buffer to the module.
register_forward_hook(hook, *[, prepend, ...])Register a forward hook on the module.
register_forward_pre_hook(hook, *[, ...])Register a forward pre-hook on the module.
register_full_backward_hook(hook[, prepend])Register a backward hook on the module.
register_full_backward_pre_hook(hook[, prepend])Register a backward pre-hook on the module.
register_load_state_dict_post_hook(hook)Register a post-hook to be run after module's
load_state_dict()is called.register_load_state_dict_pre_hook(hook)Register a pre-hook to be run before module's
load_state_dict()is called.register_module(name, module)Alias for
add_module().register_parameter(name, param)Add a parameter to the module.
register_state_dict_post_hook(hook)Register a post-hook for the
state_dict()method.register_state_dict_pre_hook(hook)Register a pre-hook for the
state_dict()method.requires_grad_([requires_grad])Change if autograd should record operations on parameters in this module.
save(model_file[, checkpoint])Saves the current model to the provided file.
set_extra_state(state)Set extra state contained in the loaded state_dict.
set_submodule(target, module)Set the submodule given by
targetif it exists, otherwise throw an error.share_memory()See
torch.Tensor.share_memory_().state_dict(*args[, destination, prefix, ...])Return a dictionary containing references to the whole state of the module.
to(*args, **kwargs)Move and/or cast the parameters and buffers.
to_empty(*, device[, recurse])Move the parameters and buffers to the specified device without copying storage.
train([mode])Set the module in training mode.
type(dst_type)Casts all parameters and buffers to
dst_type.xpu([device])Move all model parameters and buffers to the XPU.
zero_grad([set_to_none])Reset gradients of all model parameters.
Attributes
T_destinationcall_super_initdump_patchesEach model predicts labels of a certain type.
model_cardmulti_label_thresholdtraining- property label_type#
Each model predicts labels of a certain type.
- get_used_tokens(corpus, context_length=0, respect_document_boundaries=True)View on GitHub#
- Return type:
Iterable[list[str]]