flair.embeddings.legacy.CharLMEmbeddings#
- class flair.embeddings.legacy.CharLMEmbeddings(model, detach=True, use_cache=False, cache_directory=None)View on GitHub#
Bases:
TokenEmbeddingsContextual string embeddings of words, as proposed in Akbik et al., 2018.
- __init__(model, detach=True, use_cache=False, cache_directory=None)View on GitHub#
Initializes contextual string embeddings using a character-level language model.
- Parameters:
model (
str) – model string, one of ‘news-forward’, ‘news-backward’, ‘news-forward-fast’, ‘news-backward-fast’, ‘mix-forward’, ‘mix-backward’, ‘german-forward’, ‘german-backward’, ‘polish-backward’, ‘polish-forward’ depending on which character language model is desired.detach (
bool) – if set to False, the gradient will propagate into the language model. this dramatically slows down training and often leads to worse results, so not recommended.use_cache (
bool) – if set to False, will not write embeddings to file for later retrieval. this saves disk space but will not allow re-use of once computed embeddings that do not fit into memorycache_directory (
Optional[Path]) – if cache_directory is not set, the cache will be written to ~/.flair/embeddings. otherwise the cache is written to the provided directory.
Deprecated since version 0.4: Use ‘FlairEmbeddings’ instead.
Methods
__init__(model[, detach, use_cache, ...])Initializes contextual string embeddings using a character-level language model.
add_module(name, module)Add a child module to the current module.
apply(fn)Apply
fnrecursively to every submodule (as returned by.children()) as well as self.bfloat16()Casts all floating point parameters and buffers to
bfloat16datatype.buffers([recurse])Return an iterator over module buffers.
children()Return an iterator over immediate children modules.
compile(*args, **kwargs)Compile this Module's forward using
torch.compile().cpu()Move all model parameters and buffers to the CPU.
cuda([device])Move all model parameters and buffers to the GPU.
double()Casts all floating point parameters and buffers to
doubledatatype.embed(data_points)Add embeddings to all words in a list of sentences.
eval()Set the module in evaluation mode.
extra_repr()Return the extra representation of the module.
float()Casts all floating point parameters and buffers to
floatdatatype.forward(*input)Define the computation performed at every call.
from_params(params)get_buffer(target)Return the buffer given by
targetif it exists, otherwise throw an error.get_extra_state()Return any extra state to include in the module's state_dict.
get_instance_parameters(locals)get_names()Returns a list of embedding names.
get_parameter(target)Return the parameter given by
targetif it exists, otherwise throw an error.get_submodule(target)Return the submodule given by
targetif it exists, otherwise throw an error.half()Casts all floating point parameters and buffers to
halfdatatype.ipu([device])Move all model parameters and buffers to the IPU.
load_embedding(params)load_state_dict(state_dict[, strict, assign])Copy parameters and buffers from
state_dictinto this module and its descendants.modules()Return an iterator over all modules in the network.
mtia([device])Move all model parameters and buffers to the MTIA.
named_buffers([prefix, recurse, ...])Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
named_children()Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
named_modules([memo, prefix, remove_duplicate])Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
named_parameters([prefix, recurse, ...])Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
parameters([recurse])Return an iterator over module parameters.
register_backward_hook(hook)Register a backward hook on the module.
register_buffer(name, tensor[, persistent])Add a buffer to the module.
register_forward_hook(hook, *[, prepend, ...])Register a forward hook on the module.
register_forward_pre_hook(hook, *[, ...])Register a forward pre-hook on the module.
register_full_backward_hook(hook[, prepend])Register a backward hook on the module.
register_full_backward_pre_hook(hook[, prepend])Register a backward pre-hook on the module.
register_load_state_dict_post_hook(hook)Register a post-hook to be run after module's
load_state_dict()is called.register_load_state_dict_pre_hook(hook)Register a pre-hook to be run before module's
load_state_dict()is called.register_module(name, module)Alias for
add_module().register_parameter(name, param)Add a parameter to the module.
register_state_dict_post_hook(hook)Register a post-hook for the
state_dict()method.register_state_dict_pre_hook(hook)Register a pre-hook for the
state_dict()method.requires_grad_([requires_grad])Change if autograd should record operations on parameters in this module.
save_embeddings([use_state_dict])set_extra_state(state)Set extra state contained in the loaded state_dict.
set_submodule(target, module)Set the submodule given by
targetif it exists, otherwise throw an error.share_memory()See
torch.Tensor.share_memory_().state_dict(*args[, destination, prefix, ...])Return a dictionary containing references to the whole state of the module.
to(*args, **kwargs)Move and/or cast the parameters and buffers.
to_empty(*, device[, recurse])Move the parameters and buffers to the specified device without copying storage.
to_params()train([mode])Set the module in training mode.
type(dst_type)Casts all parameters and buffers to
dst_type.xpu([device])Move all model parameters and buffers to the XPU.
zero_grad([set_to_none])Reset gradients of all model parameters.
Attributes
T_destinationcall_super_initdump_patchesReturns the length of the embedding vector.
embedding_typeembeddings_nametraining- train(mode=True)View on GitHub#
Set the module in training mode.
This has an effect only on certain modules. See the documentation of particular modules for details of their behaviors in training/evaluation mode, i.e., whether they are affected, e.g.
Dropout,BatchNorm, etc.- Parameters:
mode (bool) – whether to set training mode (
True) or evaluation mode (False). Default:True.- Returns:
self
- Return type:
Module
- property embedding_length: int#
Returns the length of the embedding vector.