flair.datasets.entity_linking.WSD_RAGANATO_ALL#
- class flair.datasets.entity_linking.WSD_RAGANATO_ALL(base_path=None, in_memory=True, columns={0: 'text', 3: 'sense'}, label_name_map=None, banned_sentences=None, sample_missing_splits=True, cut_multisense=True)View on GitHub#
Bases:
ColumnCorpus- __init__(base_path=None, in_memory=True, columns={0: 'text', 3: 'sense'}, label_name_map=None, banned_sentences=None, sample_missing_splits=True, cut_multisense=True)View on GitHub#
Initialize ragnato_ALL (concatenation of all SensEval and SemEval all-words tasks) provided in UFSAC.
see getalp/UFSAC When first initializing the corpus the whole UFSAC data is downloaded.
Methods
__init__([base_path, in_memory, columns, ...])Initialize ragnato_ALL (concatenation of all SensEval and SemEval all-words tasks) provided in UFSAC.
add_label_noise(label_type, labels[, ...])Generates uniform label noise distribution in the chosen dataset split.
downsample([percentage, downsample_train, ...])Randomly downsample the corpus to the given percentage (by removing data points).
filter_empty_sentences()A method that filters all sentences consisting of 0 tokens.
filter_long_sentences(max_charlength)A method that filters all sentences for which the plain text is longer than a specified number of characters.
get_all_sentences()Returns all sentences (spanning all three splits) in the
Corpus.get_label_distribution()Counts occurrences of each label in the corpus and returns them as a dictionary object.
make_label_dictionary(label_type[, ...])Creates a dictionary of all labels assigned to the sentences in the corpus.
make_tag_dictionary(tag_type)Create a tag dictionary of a given label type.
make_vocab_dictionary([max_tokens, min_freq])Creates a
Dictionaryof all tokens contained in the corpus.obtain_statistics([label_type, pretty_print])Print statistics about the corpus, including the length of the sentences and the labels in the corpus.
Attributes
devThe dev split as a
torch.utils.data.Datasetobject.testThe test split as a
torch.utils.data.Datasetobject.trainThe training split as a
torch.utils.data.Datasetobject.