flair.datasets.document_classification.IMDB#
- class flair.datasets.document_classification.IMDB(base_path=None, rebalance_corpus=True, tokenizer=<flair.tokenization.SegtokTokenizer object>, memory_mode='partial', **corpusargs)View on GitHub#
Bases:
ClassificationCorpusCorpus of IMDB movie reviews labeled by sentiment (POSITIVE, NEGATIVE).
Downloaded from and documented at http://ai.stanford.edu/~amaas/data/sentiment/.
- __init__(base_path=None, rebalance_corpus=True, tokenizer=<flair.tokenization.SegtokTokenizer object>, memory_mode='partial', **corpusargs)View on GitHub#
Initialize the IMDB move review sentiment corpus.
- Parameters:
base_path (
Union[str,Path,None]) – Provide this only if you store the IMDB corpus in a specific folder, otherwise use default.tokenizer (
Tokenizer) – Custom tokenizer to use (default is SegtokTokenizer)rebalance_corpus (
bool) – Weather to use a 80/10/10 data split instead of the original 50/0/50 split.memory_mode –
Set to ‘partial’ because this is a huge corpus, but you can also set to ‘full’ for faster
- processing or ‘none’ for less memory.
corpusargs: Other args for ClassificationCorpus.
Methods
__init__([base_path, rebalance_corpus, ...])Initialize the IMDB move review sentiment corpus.
add_label_noise(label_type, labels[, ...])Generates uniform label noise distribution in the chosen dataset split.
downsample([percentage, downsample_train, ...])Randomly downsample the corpus to the given percentage (by removing data points).
filter_empty_sentences()A method that filters all sentences consisting of 0 tokens.
filter_long_sentences(max_charlength)A method that filters all sentences for which the plain text is longer than a specified number of characters.
get_all_sentences()Returns all sentences (spanning all three splits) in the
Corpus.get_label_distribution()Counts occurrences of each label in the corpus and returns them as a dictionary object.
make_label_dictionary(label_type[, ...])Creates a dictionary of all labels assigned to the sentences in the corpus.
make_tag_dictionary(tag_type)Create a tag dictionary of a given label type.
make_vocab_dictionary([max_tokens, min_freq])Creates a
Dictionaryof all tokens contained in the corpus.obtain_statistics([label_type, pretty_print])Print statistics about the corpus, including the length of the sentences and the labels in the corpus.
Attributes
devThe dev split as a
torch.utils.data.Datasetobject.testThe test split as a
torch.utils.data.Datasetobject.trainThe training split as a
torch.utils.data.Datasetobject.