flair.datasets.document_classification.GERMEVAL_2018_OFFENSIVE_LANGUAGE#
- class flair.datasets.document_classification.GERMEVAL_2018_OFFENSIVE_LANGUAGE(base_path=None, tokenizer=<flair.tokenization.SegtokTokenizer object>, memory_mode='full', fine_grained_classes=False, **corpusargs)View on GitHub#
Bases:
ClassificationCorpusGermEval 2018 corpus for identification of offensive language.
Classifying German tweets into 2 coarse-grained categories OFFENSIVE and OTHER or 4 fine-grained categories ABUSE, INSULT, PROFATINTY and OTHER.
- __init__(base_path=None, tokenizer=<flair.tokenization.SegtokTokenizer object>, memory_mode='full', fine_grained_classes=False, **corpusargs)View on GitHub#
Instantiates GermEval 2018 Offensive Language Classification Corpus.
- Parameters:
base_path (
Union[str,Path,None]) – Provide this only if you store the Offensive Language corpus in a specific folder, otherwise use default.tokenizer (
Union[bool,Tokenizer]) – Custom tokenizer to use (default is SegtokTokenizer)memory_mode (
str) – Set to ‘full’ by default since this is a small corpus. Can also be ‘partial’ or ‘none’.fine_grained_classes (
bool) – Set to True to load the dataset with 4 fine-grained classescorpusargs – Other args for ClassificationCorpus.
Methods
__init__([base_path, tokenizer, ...])Instantiates GermEval 2018 Offensive Language Classification Corpus.
add_label_noise(label_type, labels[, ...])Generates uniform label noise distribution in the chosen dataset split.
downsample([percentage, downsample_train, ...])Randomly downsample the corpus to the given percentage (by removing data points).
filter_empty_sentences()A method that filters all sentences consisting of 0 tokens.
filter_long_sentences(max_charlength)A method that filters all sentences for which the plain text is longer than a specified number of characters.
get_all_sentences()Returns all sentences (spanning all three splits) in the
Corpus.get_label_distribution()Counts occurrences of each label in the corpus and returns them as a dictionary object.
make_label_dictionary(label_type[, ...])Creates a dictionary of all labels assigned to the sentences in the corpus.
make_tag_dictionary(tag_type)Create a tag dictionary of a given label type.
make_vocab_dictionary([max_tokens, min_freq])Creates a
Dictionaryof all tokens contained in the corpus.obtain_statistics([label_type, pretty_print])Print statistics about the corpus, including the length of the sentences and the labels in the corpus.
Attributes
devThe dev split as a
torch.utils.data.Datasetobject.testThe test split as a
torch.utils.data.Datasetobject.trainThe training split as a
torch.utils.data.Datasetobject.