flair.datasets.biomedical.CDR#
- class flair.datasets.biomedical.CDR(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#
Bases:
ColumnCorpusCDR corpus as provided by JHnlp/BioCreative-V-CDR-Corpus.
For further information see Li et al.: BioCreative V CDR task corpus: a resource for chemical disease relation extraction https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4860626/
Deprecated since version 0.13.0: Please use data set implementation from BigBio instead (see BIGBIO_NER_CORPUS)
- __init__(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#
Initialize the CDR corpus.
- Parameters:
base_path (
Union[str,Path,None]) – Path to the corpus on your machinein_memory (
bool) – If True, keeps dataset in memory giving speedups in training.sentence_splitter (
Optional[SentenceSplitter]) – Implementation ofSentenceSplitterwhich segments documents into sentences and tokens (defaultSciSpacySentenceSplitter)
Methods
__init__([base_path, in_memory, ...])Initialize the CDR corpus.
add_label_noise(label_type, labels[, ...])Generates uniform label noise distribution in the chosen dataset split.
download_dataset(data_dir)downsample([percentage, downsample_train, ...])Randomly downsample the corpus to the given percentage (by removing data points).
filter_empty_sentences()A method that filters all sentences consisting of 0 tokens.
filter_long_sentences(max_charlength)A method that filters all sentences for which the plain text is longer than a specified number of characters.
get_all_sentences()Returns all sentences (spanning all three splits) in the
Corpus.get_label_distribution()Counts occurrences of each label in the corpus and returns them as a dictionary object.
make_label_dictionary(label_type[, ...])Creates a dictionary of all labels assigned to the sentences in the corpus.
make_tag_dictionary(tag_type)Create a tag dictionary of a given label type.
make_vocab_dictionary([max_tokens, min_freq])Creates a
Dictionaryof all tokens contained in the corpus.obtain_statistics([label_type, pretty_print])Print statistics about the corpus, including the length of the sentences and the labels in the corpus.
Attributes
devThe dev split as a
torch.utils.data.Datasetobject.testThe test split as a
torch.utils.data.Datasetobject.trainThe training split as a
torch.utils.data.Datasetobject.- static download_dataset(data_dir)View on GitHub#