flair.embeddings.document.TransformerDocumentEmbeddings#
- class flair.embeddings.document.TransformerDocumentEmbeddings(model='bert-base-uncased', layers='-1', layer_mean=False, is_token_embedding=False, **kwargs)View on GitHub#
Bases:
DocumentEmbeddings,TransformerEmbeddings- __init__(model='bert-base-uncased', layers='-1', layer_mean=False, is_token_embedding=False, **kwargs)View on GitHub#
Bidirectional transformer embeddings of words from various transformer architectures.
- Parameters:
model (
str) – name of transformer model (see https://huggingface.co/transformers/pretrained_models.html for options)layers (
str) – string indicating which layers to take for embedding (-1 is topmost layer)cls_pooling – Pooling strategy for combining token level embeddings. options are ‘cls’, ‘max’, ‘mean’.
layer_mean (
bool) – If True, uses a scalar mix of layers as embeddingfine_tune – If True, allows transformers to be fine-tuned during training
is_token_embedding (
bool) – If True, the embedding can be used as TokenEmbedding too.**kwargs – Arguments propagated to
flair.embeddings.transformer.TransformerEmbeddings.__init__()
Methods
__init__([model, layers, layer_mean, ...])Bidirectional transformer embeddings of words from various transformer architectures.
add_module(name, module)Add a child module to the current module.
apply(fn)Apply
fnrecursively to every submodule (as returned by.children()) as well as self.bfloat16()Casts all floating point parameters and buffers to
bfloat16datatype.buffers([recurse])Return an iterator over module buffers.
children()Return an iterator over immediate children modules.
compile(*args, **kwargs)Compile this Module's forward using
torch.compile().cpu()Move all model parameters and buffers to the CPU.
create_from_state(**state)cuda([device])Move all model parameters and buffers to the GPU.
double()Casts all floating point parameters and buffers to
doubledatatype.embed(data_points)Add embeddings to all words in a list of sentences.
eval()Set the module in evaluation mode.
export_onnx(path, example_sentences, **kwargs)Export TransformerEmbeddings to OnnxFormat.
extra_repr()Return the extra representation of the module.
float()Casts all floating point parameters and buffers to
floatdatatype.forward(input_ids[, sub_token_lengths, ...])Define the computation performed at every call.
from_params(params)get_buffer(target)Return the buffer given by
targetif it exists, otherwise throw an error.get_extra_state()Return any extra state to include in the module's state_dict.
get_instance_parameters(locals)get_names()Returns a list of embedding names.
get_parameter(target)Return the parameter given by
targetif it exists, otherwise throw an error.get_submodule(target)Return the submodule given by
targetif it exists, otherwise throw an error.half()Casts all floating point parameters and buffers to
halfdatatype.ipu([device])Move all model parameters and buffers to the IPU.
load_embedding(params)load_state_dict(state_dict[, strict, assign])Copy parameters and buffers from
state_dictinto this module and its descendants.modules()Return an iterator over all modules in the network.
mtia([device])Move all model parameters and buffers to the MTIA.
named_buffers([prefix, recurse, ...])Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
named_children()Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
named_modules([memo, prefix, remove_duplicate])Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
named_parameters([prefix, recurse, ...])Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
parameters([recurse])Return an iterator over module parameters.
prepare_tensors(sentences[, device])register_backward_hook(hook)Register a backward hook on the module.
register_buffer(name, tensor[, persistent])Add a buffer to the module.
register_forward_hook(hook, *[, prepend, ...])Register a forward hook on the module.
register_forward_pre_hook(hook, *[, ...])Register a forward pre-hook on the module.
register_full_backward_hook(hook[, prepend])Register a backward hook on the module.
register_full_backward_pre_hook(hook[, prepend])Register a backward pre-hook on the module.
register_load_state_dict_post_hook(hook)Register a post-hook to be run after module's
load_state_dict()is called.register_load_state_dict_pre_hook(hook)Register a pre-hook to be run before module's
load_state_dict()is called.register_module(name, module)Alias for
add_module().register_parameter(name, param)Add a parameter to the module.
register_state_dict_post_hook(hook)Register a post-hook for the
state_dict()method.register_state_dict_pre_hook(hook)Register a pre-hook for the
state_dict()method.requires_grad_([requires_grad])Change if autograd should record operations on parameters in this module.
save_embeddings([use_state_dict])set_extra_state(state)Set extra state contained in the loaded state_dict.
set_submodule(target, module)Set the submodule given by
targetif it exists, otherwise throw an error.share_memory()See
torch.Tensor.share_memory_().state_dict(*args[, destination, prefix, ...])Return a dictionary containing references to the whole state of the module.
to(*args, **kwargs)Move and/or cast the parameters and buffers.
to_args()to_empty(*, device[, recurse])Move the parameters and buffers to the specified device without copying storage.
to_params()train([mode])Set the module in training mode.
type(dst_type)Casts all parameters and buffers to
dst_type.xpu([device])Move all model parameters and buffers to the XPU.
zero_grad([set_to_none])Reset gradients of all model parameters.
Attributes
T_destinationcall_super_initdump_patchesembedding_lengthReturns the length of the embedding vector.
embedding_typetraining- onnx_clsView on GitHub#
alias of
TransformerOnnxDocumentEmbeddings
- classmethod create_from_state(**state)View on GitHub#
- embeddings_name: str = 'TransformerDocumentEmbeddings'#