flair.embeddings.document.SentenceTransformerDocumentEmbeddings#

class flair.embeddings.document.SentenceTransformerDocumentEmbeddings(model='bert-base-nli-mean-tokens', batch_size=1)View on GitHub#

Bases: DocumentEmbeddings

__init__(model='bert-base-nli-mean-tokens', batch_size=1)View on GitHub#

Instantiates a document embedding using the SentenceTransformer Embeddings.

Parameters:
  • model (str) – string name of models from SentencesTransformer Class

  • batch_size (int) – int number of sentences to processed in one batch

Methods

__init__([model, batch_size])

Instantiates a document embedding using the SentenceTransformer Embeddings.

add_module(name, module)

Add a child module to the current module.

apply(fn)

Apply fn recursively to every submodule (as returned by .children()) as well as self.

bfloat16()

Casts all floating point parameters and buffers to bfloat16 datatype.

buffers([recurse])

Return an iterator over module buffers.

children()

Return an iterator over immediate children modules.

compile(*args, **kwargs)

Compile this Module's forward using torch.compile().

cpu()

Move all model parameters and buffers to the CPU.

cuda([device])

Move all model parameters and buffers to the GPU.

double()

Casts all floating point parameters and buffers to double datatype.

embed(data_points)

Add embeddings to all words in a list of sentences.

eval()

Set the module in evaluation mode.

extra_repr()

Set the extra representation of the module.

float()

Casts all floating point parameters and buffers to float datatype.

forward(*input)

Define the computation performed at every call.

from_params(params)

get_buffer(target)

Return the buffer given by target if it exists, otherwise throw an error.

get_extra_state()

Return any extra state to include in the module's state_dict.

get_instance_parameters(locals)

get_names()

Returns a list of embedding names.

get_parameter(target)

Return the parameter given by target if it exists, otherwise throw an error.

get_submodule(target)

Return the submodule given by target if it exists, otherwise throw an error.

half()

Casts all floating point parameters and buffers to half datatype.

ipu([device])

Move all model parameters and buffers to the IPU.

load_embedding(params)

load_state_dict(state_dict[, strict, assign])

Copy parameters and buffers from state_dict into this module and its descendants.

modules()

Return an iterator over all modules in the network.

mtia([device])

Move all model parameters and buffers to the MTIA.

named_buffers([prefix, recurse, ...])

Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.

named_children()

Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.

named_modules([memo, prefix, remove_duplicate])

Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.

named_parameters([prefix, recurse, ...])

Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.

parameters([recurse])

Return an iterator over module parameters.

register_backward_hook(hook)

Register a backward hook on the module.

register_buffer(name, tensor[, persistent])

Add a buffer to the module.

register_forward_hook(hook, *[, prepend, ...])

Register a forward hook on the module.

register_forward_pre_hook(hook, *[, ...])

Register a forward pre-hook on the module.

register_full_backward_hook(hook[, prepend])

Register a backward hook on the module.

register_full_backward_pre_hook(hook[, prepend])

Register a backward pre-hook on the module.

register_load_state_dict_post_hook(hook)

Register a post-hook to be run after module's load_state_dict() is called.

register_load_state_dict_pre_hook(hook)

Register a pre-hook to be run before module's load_state_dict() is called.

register_module(name, module)

Alias for add_module().

register_parameter(name, param)

Add a parameter to the module.

register_state_dict_post_hook(hook)

Register a post-hook for the state_dict() method.

register_state_dict_pre_hook(hook)

Register a pre-hook for the state_dict() method.

requires_grad_([requires_grad])

Change if autograd should record operations on parameters in this module.

save_embeddings([use_state_dict])

set_extra_state(state)

Set extra state contained in the loaded state_dict.

set_submodule(target, module)

Set the submodule given by target if it exists, otherwise throw an error.

share_memory()

See torch.Tensor.share_memory_().

state_dict(*args[, destination, prefix, ...])

Return a dictionary containing references to the whole state of the module.

to(*args, **kwargs)

Move and/or cast the parameters and buffers.

to_empty(*, device[, recurse])

Move the parameters and buffers to the specified device without copying storage.

to_params()

train([mode])

Set the module in training mode.

type(dst_type)

Casts all parameters and buffers to dst_type.

xpu([device])

Move all model parameters and buffers to the XPU.

zero_grad([set_to_none])

Reset gradients of all model parameters.

Attributes

T_destination

call_super_init

dump_patches

embedding_length

Returns the length of the embedding vector.

embedding_type

embeddings_name

training

property embedding_length: int#

Returns the length of the embedding vector.

classmethod from_params(params)View on GitHub#
Return type:

SentenceTransformerDocumentEmbeddings

to_params()View on GitHub#
Return type:

dict[str, Any]

embeddings_name: str = 'SentenceTransformerDocumentEmbeddings'#