flair.datasets.sequence_labeling.JsonlCorpus#
- class flair.datasets.sequence_labeling.JsonlCorpus(data_folder, train_file=None, test_file=None, dev_file=None, encoding='utf-8', text_column_name='data', label_column_name='label', metadata_column_name='metadata', label_type='ner', autofind_splits=True, name=None, use_tokenizer=True, **corpusargs)View on GitHub#
Bases:
MultiFileJsonlCorpus- __init__(data_folder, train_file=None, test_file=None, dev_file=None, encoding='utf-8', text_column_name='data', label_column_name='label', metadata_column_name='metadata', label_type='ner', autofind_splits=True, name=None, use_tokenizer=True, **corpusargs)View on GitHub#
Instantiates a JsonlCorpus with one file per Dataset (train, dev, and test).
- Parameters:
data_folder (
Union[str,Path]) – Path to the folder containing the JSONL corpustrain_file (
Union[str,Path,None]) – the name of the train filetest_file (
Union[str,Path,None]) – the name of the test filedev_file (
Union[str,Path,None]) – the name of the dev file, if None, dev data is sampled from trainencoding (
str) – file encoding (default “utf-8”)text_column_name (
str) – Name of the text column inside the JSONL file.label_column_name (
str) – Name of the label column inside the JSONL file.metadata_column_name (
str) – Name of the metadata column inside the JSONL file.label_type (
str) – The type of label to predict (default “ner”)autofind_splits (
bool) – Whether train, test and dev file should be determined automaticallyname (
Optional[str]) – name of the Corpus see flair.data.Corpususe_tokenizer (
Union[bool,Tokenizer]) – Specify a custom tokenizer to split the text into tokens.
Methods
__init__(data_folder[, train_file, ...])Instantiates a JsonlCorpus with one file per Dataset (train, dev, and test).
add_label_noise(label_type, labels[, ...])Generates uniform label noise distribution in the chosen dataset split.
downsample([percentage, downsample_train, ...])Randomly downsample the corpus to the given percentage (by removing data points).
filter_empty_sentences()A method that filters all sentences consisting of 0 tokens.
filter_long_sentences(max_charlength)A method that filters all sentences for which the plain text is longer than a specified number of characters.
get_all_sentences()Returns all sentences (spanning all three splits) in the
Corpus.get_label_distribution()Counts occurrences of each label in the corpus and returns them as a dictionary object.
make_label_dictionary(label_type[, ...])Creates a dictionary of all labels assigned to the sentences in the corpus.
make_tag_dictionary(tag_type)Create a tag dictionary of a given label type.
make_vocab_dictionary([max_tokens, min_freq])Creates a
Dictionaryof all tokens contained in the corpus.obtain_statistics([label_type, pretty_print])Print statistics about the corpus, including the length of the sentences and the labels in the corpus.
Attributes
devThe dev split as a
torch.utils.data.Datasetobject.testThe test split as a
torch.utils.data.Datasetobject.trainThe training split as a
torch.utils.data.Datasetobject.