flair.datasets.sequence_labeling.JsonlCorpus#
- class flair.datasets.sequence_labeling.JsonlCorpus(data_folder, train_file=None, test_file=None, dev_file=None, encoding='utf-8', text_column_name='data', label_column_name='label', metadata_column_name='metadata', label_type='ner', autofind_splits=True, name=None, use_tokenizer=True, **corpusargs)View on GitHub#
Bases:
MultiFileJsonlCorpus
- __init__(data_folder, train_file=None, test_file=None, dev_file=None, encoding='utf-8', text_column_name='data', label_column_name='label', metadata_column_name='metadata', label_type='ner', autofind_splits=True, name=None, use_tokenizer=True, **corpusargs)View on GitHub#
Instantiates a JsonlCorpus with one file per Dataset (train, dev, and test).
- Parameters:
data_folder (
Union
[str
,Path
]) – Path to the folder containing the JSONL corpustrain_file (
Union
[str
,Path
,None
]) – the name of the train filetest_file (
Union
[str
,Path
,None
]) – the name of the test filedev_file (
Union
[str
,Path
,None
]) – the name of the dev file, if None, dev data is sampled from trainencoding (
str
) – file encoding (default “utf-8”)text_column_name (
str
) – Name of the text column inside the JSONL file.label_column_name (
str
) – Name of the label column inside the JSONL file.metadata_column_name (
str
) – Name of the metadata column inside the JSONL file.label_type (
str
) – The type of label to predict (default “ner”)autofind_splits (
bool
) – Whether train, test and dev file should be determined automaticallyname (
Optional
[str
]) – name of the Corpus see flair.data.Corpususe_tokenizer (
Union
[bool
,Tokenizer
]) – Specify a custom tokenizer to split the text into tokens.
Methods
__init__
(data_folder[, train_file, ...])Instantiates a JsonlCorpus with one file per Dataset (train, dev, and test).
add_label_noise
(label_type, labels[, ...])Generates uniform label noise distribution in the chosen dataset split.
downsample
([percentage, downsample_train, ...])Randomly downsample the corpus to the given percentage (by removing data points).
filter_empty_sentences
()A method that filters all sentences consisting of 0 tokens.
filter_long_sentences
(max_charlength)A method that filters all sentences for which the plain text is longer than a specified number of characters.
get_all_sentences
()Returns all sentences (spanning all three splits) in the
Corpus
.get_label_distribution
()Counts occurrences of each label in the corpus and returns them as a dictionary object.
make_label_dictionary
(label_type[, ...])Creates a dictionary of all labels assigned to the sentences in the corpus.
make_tag_dictionary
(tag_type)Create a tag dictionary of a given label type.
make_vocab_dictionary
([max_tokens, min_freq])Creates a
Dictionary
of all tokens contained in the corpus.obtain_statistics
([label_type, pretty_print])Print statistics about the corpus, including the length of the sentences and the labels in the corpus.
Attributes
dev
The dev split as a
torch.utils.data.Dataset
object.test
The test split as a
torch.utils.data.Dataset
object.train
The training split as a
torch.utils.data.Dataset
object.