flair.datasets.biomedical.HUNER_CHEMICAL_BIOID#
- class flair.datasets.biomedical.HUNER_CHEMICAL_BIOID(base_path=None, in_memory=True, sentence_splitter=None, train_split_name=None, dev_split_name=None, test_split_name=None)View on GitHub#
Bases:
BIGBIO_NER_CORPUS
- __init__(base_path=None, in_memory=True, sentence_splitter=None, train_split_name=None, dev_split_name=None, test_split_name=None)View on GitHub#
Initialize the BigBio Corpus.
- Parameters:
dataset_name – Name of the dataset in the huggingface hub (e.g. nlmchem or bigbio/nlmchem)
base_path (
Union
[str
,Path
,None
]) – Path to the corpus on your machinein_memory (
bool
) – If True, keeps dataset in memory giving speedups in training.sentence_splitter (
Optional
[SentenceSplitter
]) – Custom implementation ofSentenceSplitter
which segments the text into sentences and tokens (defaultSciSpacySentenceSplitter
)train_split_name (
Optional
[str
]) – Name of the training split in bigbio, usually train (default: None)dev_split_name (
Optional
[str
]) – Name of the development split in bigbio, usually validation (default: None)test_split_name (
Optional
[str
]) – Name of the test split in bigbio, usually test (default: None)
Methods
__init__
([base_path, in_memory, ...])Initialize the BigBio Corpus.
add_label_noise
(label_type, labels[, ...])Generates uniform label noise distribution in the chosen dataset split.
bin_search_passage
(passages, low, high, entity)Helper methods to find the passage to a given entity mention (incl.
build_corpus_directory_name
(dataset_name)Builds the directory name for the given data set.
downsample
([percentage, downsample_train, ...])Randomly downsample the corpus to the given percentage (by removing data points).
filter_empty_sentences
()A method that filters all sentences consisting of 0 tokens.
filter_long_sentences
(max_charlength)A method that filters all sentences for which the plain text is longer than a specified number of characters.
get_all_sentences
()Returns all sentences (spanning all three splits) in the
Corpus
.Return the mapping of entity type given in the dataset to canonical types.
get_label_distribution
()Counts occurrences of each label in the corpus and returns them as a dictionary object.
make_label_dictionary
(label_type[, ...])Creates a dictionary of all labels assigned to the sentences in the corpus.
make_tag_dictionary
(tag_type)Create a tag dictionary of a given label type.
make_vocab_dictionary
([max_tokens, min_freq])Creates a
Dictionary
of all tokens contained in the corpus.obtain_statistics
([label_type, pretty_print])Print statistics about the corpus, including the length of the sentences and the labels in the corpus.
to_internal_dataset
(dataset, split)Converts a dataset given in hugging datasets format to our internal corpus representation.
Attributes
dev
The dev split as a
torch.utils.data.Dataset
object.test
The test split as a
torch.utils.data.Dataset
object.train
The training split as a
torch.utils.data.Dataset
object.- get_entity_type_mapping()View on GitHub#
Return the mapping of entity type given in the dataset to canonical types.
Note, if a entity type is not present in the map it is discarded.
- Return type:
Optional
[dict
]
- build_corpus_directory_name(dataset_name)View on GitHub#
Builds the directory name for the given data set.
- Return type:
str