flair.trainers#
- class flair.trainers.ModelTrainer(model, corpus)View on GitHub#
Bases:
Pluggable
- valid_events: Optional[Set[EventIdenifier]] = {'_training_exception', '_training_finally', 'after_evaluation', 'after_setup', 'after_training', 'after_training_batch', 'after_training_epoch', 'after_training_loop', 'before_training_batch', 'before_training_epoch', 'before_training_optimizer_step', 'metric_recorded', 'training_interrupt'}#
- reset_training_attributes()View on GitHub#
- static check_for_and_delete_previous_best_models(base_path)View on GitHub#
- static get_batch_steps(batch, mini_batch_chunk_size)View on GitHub#
- train(base_path, anneal_factor=0.5, patience=3, min_learning_rate=0.0001, initial_extra_patience=0, anneal_with_restarts=False, learning_rate=0.1, decoder_learning_rate=None, mini_batch_size=32, eval_batch_size=64, mini_batch_chunk_size=None, max_epochs=100, optimizer=<class 'torch.optim.sgd.SGD'>, train_with_dev=False, train_with_test=False, reduce_transformer_vocab=False, main_evaluation_metric=('micro avg', 'f1-score'), monitor_test=False, monitor_train_sample=0.0, use_final_model_for_eval=False, gold_label_dictionary_for_eval=None, exclude_labels=[], sampler=None, shuffle=True, shuffle_first_epoch=True, embeddings_storage_mode='cpu', epoch=0, save_final_model=True, save_optimizer_state=False, save_model_each_k_epochs=0, create_file_logs=True, create_loss_file=True, write_weights=False, plugins=None, attach_default_scheduler=True, **kwargs)View on GitHub#
- fine_tune(base_path, warmup_fraction=0.1, learning_rate=5e-05, decoder_learning_rate=None, mini_batch_size=4, eval_batch_size=16, mini_batch_chunk_size=None, max_epochs=10, optimizer=<class 'torch.optim.adamw.AdamW'>, train_with_dev=False, train_with_test=False, reduce_transformer_vocab=False, main_evaluation_metric=('micro avg', 'f1-score'), monitor_test=False, monitor_train_sample=0.0, use_final_model_for_eval=True, gold_label_dictionary_for_eval=None, exclude_labels=[], sampler=None, shuffle=True, shuffle_first_epoch=True, embeddings_storage_mode='none', epoch=0, save_final_model=True, save_optimizer_state=False, save_model_each_k_epochs=0, create_file_logs=True, create_loss_file=True, write_weights=False, use_amp=False, plugins=None, attach_default_scheduler=True, **kwargs)View on GitHub#
- train_custom(base_path, learning_rate=0.1, decoder_learning_rate=None, mini_batch_size=32, eval_batch_size=64, mini_batch_chunk_size=None, max_epochs=100, optimizer=<class 'torch.optim.sgd.SGD'>, train_with_dev=False, train_with_test=False, max_grad_norm=5.0, reduce_transformer_vocab=False, main_evaluation_metric=('micro avg', 'f1-score'), monitor_test=False, monitor_train_sample=0.0, use_final_model_for_eval=False, gold_label_dictionary_for_eval=None, exclude_labels=[], sampler=None, shuffle=True, shuffle_first_epoch=True, embeddings_storage_mode='cpu', epoch=0, save_final_model=True, save_optimizer_state=False, save_model_each_k_epochs=0, create_file_logs=True, create_loss_file=True, write_weights=False, use_amp=False, plugins=[], **kwargs)View on GitHub#
Trains any class that implements the flair.nn.Model interface.
- Parameters:
base_path (
Union
[Path
,str
]) – Main path to which all output during training is logged and models are savedlearning_rate (
float
) – The learning rate of the optimizerdecoder_learning_rate (
Optional
[float
]) – Optional, if set, the decoder is trained with a separate learning ratemini_batch_size (
int
) – Size of mini-batches during trainingeval_batch_size (
int
) – Size of mini-batches during evaluationmini_batch_chunk_size (
Optional
[int
]) – If mini-batches are larger than this number, they get broken down into chunks of this size for processing purposesmax_epochs (
int
) – Maximum number of epochs to train. Terminates training if this number is surpassed.optimizer (
Type
[Optimizer
]) – The optimizer to use (typically SGD or Adam)train_with_dev (
bool
) – If True, the data from dev split is added to the training datatrain_with_test (
bool
) – If True, the data from test split is added to the training datareduce_transformer_vocab (bool) – If True, temporary reduce the vocab size to limit ram usage during training.
main_evaluation_metric (
Tuple
[str
,str
]) – The metric to optimize (often micro-average or macro-average F1-score, or accuracy)monitor_test (
bool
) – If True, test data is evaluated at end of each epochmonitor_train_sample (
float
) – Set this to evaluate on a sample of the train data at the end of each epoch. If you set an int, it will sample this many sentences to evaluate on. If you set a float, it will sample a percentage of data points from train.max_grad_norm (
Optional
[float
]) – If not None, gradients are clipped to this value before an optimizer.step is called.use_final_model_for_eval (
bool
) – If True, the final model is used for the final evaluation. If False, the model from the best epoch as determined by main_evaluation_metric is used for the final evaluation.gold_label_dictionary_for_eval (
Optional
[Dictionary
]) – Set to force evaluation to use a particular label dictionaryexclude_labels (
List
[str
]) – Optionally define a list of labels to exclude from the evaluationsampler (
Optional
[FlairSampler
]) – You can pass a data sampler here for special sampling of data.shuffle (
bool
) – If True, data is shuffled during trainingshuffle_first_epoch (
bool
) – If True, data is shuffled during the first epoch of trainingembeddings_storage_mode (
str
) – One of ‘none’ (all embeddings are deleted and freshly recomputed), ‘cpu’ (embeddings stored on CPU) or ‘gpu’ (embeddings stored on GPU)epoch (
int
) – The starting epoch (normally 0 but could be higher if you continue training model)save_final_model (
bool
) – If True, the final model is saved at the end of training.save_optimizer_state (
bool
) – If True, the optimizer state is saved alongside the modelsave_model_each_k_epochs (
int
) – Each k epochs, a model state will be written out. If set to ‘5’, a model will be saved each 5 epochs. Default is 0 which means no model saving.create_file_logs (
bool
) – If True, logging output is written to a filecreate_loss_file (
bool
) – If True, a loss file logging output is createduse_amp (
bool
) – If True, uses the torch automatic mixed precisionwrite_weights (
bool
) – If True, write weights to weights.txt on each batch logging event.plugins (
List
[TrainerPlugin
]) – Any additional plugins you want to pass to the trainer**kwargs – Additional arguments, for instance for the optimizer
- Return type:
dict
- Returns:
A dictionary with at least the key “test_score” containing the final evaluation score. Some plugins add additional information to this dictionary, such as the
flair.trainers.plugins.MetricHistoryPlugin
- class flair.trainers.LanguageModelTrainer(model, corpus, optimizer=<class 'torch.optim.sgd.SGD'>, test_mode=False, epoch=0, split=0, loss=10000, optimizer_state=None, scaler_state=None)View on GitHub#
Bases:
object
- train(base_path, sequence_length, learning_rate=20, mini_batch_size=100, anneal_factor=0.25, patience=10, clip=0.25, max_epochs=1000, checkpoint=False, grow_to_sequence_length=0, num_workers=2, use_amp=False, **kwargs)View on GitHub#
- evaluate(data_source, eval_batch_size, sequence_length)View on GitHub#
- static load_checkpoint(checkpoint_file, corpus, optimizer=<class 'torch.optim.sgd.SGD'>)View on GitHub#
- class flair.trainers.TextCorpus(path, dictionary, forward=True, character_level=True, random_case_flip=True, document_delimiter='\\n')View on GitHub#
Bases:
object