flair.embeddings.token#
- class flair.embeddings.token.TransformerWordEmbeddings(model='bert-base-uncased', is_document_embedding=False, allow_long_sentences=True, **kwargs)View on GitHub#
Bases:
TokenEmbeddings
,TransformerEmbeddings
- onnx_clsView on GitHub#
alias of
TransformerOnnxWordEmbeddings
- classmethod create_from_state(**state)View on GitHub#
- embeddings_name: str = 'TransformerWordEmbeddings'#
- class flair.embeddings.token.StackedEmbeddings(embeddings, overwrite_names=True)View on GitHub#
Bases:
TokenEmbeddings
A stack of embeddings, used if you need to combine several different embedding types.
- embed(sentences, static_embeddings=True)View on GitHub#
Add embeddings to all words in a list of sentences.
If embeddings are already added, updates only if embeddings are non-static.
- property embedding_type: str#
- property embedding_length: int#
Returns the length of the embedding vector.
- get_names()View on GitHub#
Returns a list of embedding names.
In most cases, it is just a list with one item, namely the name of this embedding. But in some cases, the embedding is made up by different embeddings (StackedEmbedding). Then, the list contains the names of all embeddings in the stack.
- Return type:
List
[str
]
- get_named_embeddings_dict()View on GitHub#
- Return type:
Dict
- classmethod from_params(params)View on GitHub#
- to_params()View on GitHub#
- embeddings_name: str = 'StackedEmbeddings'#
- class flair.embeddings.token.WordEmbeddings(embeddings, field=None, fine_tune=False, force_cpu=True, stable=False, no_header=False, vocab=None, embedding_length=None, name=None)View on GitHub#
Bases:
TokenEmbeddings
Standard static word embeddings, such as GloVe or FastText.
- resolve_precomputed_path(embeddings)View on GitHub#
- Return type:
Optional
[Path
]
- property embedding_length: int#
Returns the length of the embedding vector.
- get_cached_token_index(word)View on GitHub#
- Return type:
int
- get_vec(word)View on GitHub#
- Return type:
Tensor
- extra_repr()View on GitHub#
Set the extra representation of the module.
To print customized extra information, you should re-implement this method in your own modules. Both single-line and multi-line strings are acceptable.
- train(mode=True)View on GitHub#
Set the module in training mode.
This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g.
Dropout
,BatchNorm
, etc.- Parameters:
mode (bool) – whether to set training mode (
True
) or evaluation mode (False
). Default:True
.- Returns:
self
- Return type:
Module
- to(device)View on GitHub#
Move and/or cast the parameters and buffers.
This can be called as
- to(device=None, dtype=None, non_blocking=False)View on GitHub
- to(dtype, non_blocking=False)View on GitHub
- to(tensor, non_blocking=False)View on GitHub
- to(memory_format=torch.channels_last)View on GitHub
Its signature is similar to
torch.Tensor.to()
, but only accepts floating point or complexdtype
s. In addition, this method will only cast the floating point or complex parameters and buffers todtype
(if given). The integral parameters and buffers will be moveddevice
, if that is given, but with dtypes unchanged. Whennon_blocking
is set, it tries to convert/move asynchronously with respect to the host if possible, e.g., moving CPU Tensors with pinned memory to CUDA devices.See below for examples.
Note
This method modifies the module in-place.
- Parameters:
device (
torch.device
) – the desired device of the parameters and buffers in this moduledtype (
torch.dtype
) – the desired floating point or complex dtype of the parameters and buffers in this moduletensor (torch.Tensor) – Tensor whose dtype and device are the desired dtype and device for all parameters and buffers in this module
memory_format (
torch.memory_format
) – the desired memory format for 4D parameters and buffers in this module (keyword only argument)
- Returns:
self
- Return type:
Module
Examples:
>>> # xdoctest: +IGNORE_WANT("non-deterministic") >>> linear = nn.Linear(2, 2) >>> linear.weight Parameter containing: tensor([[ 0.1913, -0.3420], [-0.5113, -0.2325]]) >>> linear.to(torch.double) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1913, -0.3420], [-0.5113, -0.2325]], dtype=torch.float64) >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA1) >>> gpu1 = torch.device("cuda:1") >>> linear.to(gpu1, dtype=torch.half, non_blocking=True) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1914, -0.3420], [-0.5112, -0.2324]], dtype=torch.float16, device='cuda:1') >>> cpu = torch.device("cpu") >>> linear.to(cpu) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1914, -0.3420], [-0.5112, -0.2324]], dtype=torch.float16) >>> linear = nn.Linear(2, 2, bias=None).to(torch.cdouble) >>> linear.weight Parameter containing: tensor([[ 0.3741+0.j, 0.2382+0.j], [ 0.5593+0.j, -0.4443+0.j]], dtype=torch.complex128) >>> linear(torch.ones(3, 2, dtype=torch.cdouble)) tensor([[0.6122+0.j, 0.1150+0.j], [0.6122+0.j, 0.1150+0.j], [0.6122+0.j, 0.1150+0.j]], dtype=torch.complex128)
- classmethod from_params(params)View on GitHub#
- Return type:
- to_params()View on GitHub#
- Return type:
Dict
[str
,Any
]
- state_dict(*args, **kwargs)View on GitHub#
Return a dictionary containing references to the whole state of the module.
Both parameters and persistent buffers (e.g. running averages) are included. Keys are corresponding parameter and buffer names. Parameters and buffers set to
None
are not included.Note
The returned object is a shallow copy. It contains references to the module’s parameters and buffers.
Warning
Currently
state_dict()
also accepts positional arguments fordestination
,prefix
andkeep_vars
in order. However, this is being deprecated and keyword arguments will be enforced in future releases.Warning
Please avoid the use of argument
destination
as it is not designed for end-users.- Parameters:
destination (dict, optional) – If provided, the state of module will be updated into the dict and the same object is returned. Otherwise, an
OrderedDict
will be created and returned. Default:None
.prefix (str, optional) – a prefix added to parameter and buffer names to compose the keys in state_dict. Default:
''
.keep_vars (bool, optional) – by default the
Tensor
s returned in the state dict are detached from autograd. If it’s set toTrue
, detaching will not be performed. Default:False
.
- Returns:
a dictionary containing a whole state of the module
- Return type:
dict
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> module.state_dict().keys() ['bias', 'weight']
- embeddings_name: str = 'WordEmbeddings'#
- class flair.embeddings.token.CharacterEmbeddings(path_to_char_dict=None, char_embedding_dim=25, hidden_size_char=25)View on GitHub#
Bases:
TokenEmbeddings
Character embeddings of words, as proposed in Lample et al., 2016.
- property embedding_length: int#
Returns the length of the embedding vector.
- classmethod from_params(params)View on GitHub#
- Return type:
- to_params()View on GitHub#
- Return type:
Dict
[str
,Any
]
- embeddings_name: str = 'CharacterEmbeddings'#
- class flair.embeddings.token.FlairEmbeddings(model, fine_tune=False, chars_per_chunk=512, with_whitespace=True, tokenized_lm=True, is_lower=False, name=None, has_decoder=False)View on GitHub#
Bases:
TokenEmbeddings
Contextual string embeddings of words, as proposed in Akbik et al., 2018.
- train(mode=True)View on GitHub#
Set the module in training mode.
This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g.
Dropout
,BatchNorm
, etc.- Parameters:
mode (bool) – whether to set training mode (
True
) or evaluation mode (False
). Default:True
.- Returns:
self
- Return type:
Module
- property embedding_length: int#
Returns the length of the embedding vector.
- to_params()View on GitHub#
- classmethod from_params(params)View on GitHub#
- embeddings_name: str = 'FlairEmbeddings'#
- class flair.embeddings.token.PooledFlairEmbeddings(contextual_embeddings, pooling='min', only_capitalized=False, **kwargs)View on GitHub#
Bases:
TokenEmbeddings
- train(mode=True)View on GitHub#
Set the module in training mode.
This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g.
Dropout
,BatchNorm
, etc.- Parameters:
mode (bool) – whether to set training mode (
True
) or evaluation mode (False
). Default:True
.- Returns:
self
- Return type:
Module
- property embedding_length: int#
Returns the length of the embedding vector.
- get_names()View on GitHub#
Returns a list of embedding names.
In most cases, it is just a list with one item, namely the name of this embedding. But in some cases, the embedding is made up by different embeddings (StackedEmbedding). Then, the list contains the names of all embeddings in the stack.
- Return type:
List
[str
]
- classmethod from_params(params)View on GitHub#
- to_params()View on GitHub#
- embeddings_name: str = 'PooledFlairEmbeddings'#
- class flair.embeddings.token.FastTextEmbeddings(embeddings, use_local=True, field=None, name=None)View on GitHub#
Bases:
TokenEmbeddings
FastText Embeddings with oov functionality.
- property embedding_length: int#
Returns the length of the embedding vector.
- get_cached_vec(word)View on GitHub#
- Return type:
Tensor
- extra_repr()View on GitHub#
Set the extra representation of the module.
To print customized extra information, you should re-implement this method in your own modules. Both single-line and multi-line strings are acceptable.
- classmethod from_params(params)View on GitHub#
- to_params()View on GitHub#
- embeddings_name: str = 'FastTextEmbeddings'#
- class flair.embeddings.token.OneHotEmbeddings(vocab_dictionary, field='text', embedding_length=300, stable=False)View on GitHub#
Bases:
TokenEmbeddings
One-hot encoded embeddings.
- property embedding_length: int#
Returns the length of the embedding vector.
- classmethod from_corpus(corpus, field='text', min_freq=3, **kwargs)View on GitHub#
- classmethod from_params(params)View on GitHub#
- to_params()View on GitHub#
- embeddings_name: str = 'OneHotEmbeddings'#
- class flair.embeddings.token.HashEmbeddings(num_embeddings=1000, embedding_length=300, hash_method='md5')View on GitHub#
Bases:
TokenEmbeddings
Standard embeddings with Hashing Trick.
- property num_embeddings: int#
- property embedding_length: int#
Returns the length of the embedding vector.
- classmethod from_params(params)View on GitHub#
- to_params()View on GitHub#
- embeddings_name: str = 'HashEmbeddings'#
- class flair.embeddings.token.MuseCrosslingualEmbeddingsView on GitHub#
Bases:
TokenEmbeddings
- get_cached_vec(language_code, word)View on GitHub#
- Return type:
Tensor
- property embedding_length: int#
Returns the length of the embedding vector.
- classmethod from_params(params)View on GitHub#
- to_params()View on GitHub#
- embeddings_name: str = 'MuseCrosslingualEmbeddings'#
- class flair.embeddings.token.BytePairEmbeddings(language=None, dim=50, syllables=100000, cache_dir=None, model_file_path=None, embedding_file_path=None, name=None, **kwargs)View on GitHub#
Bases:
TokenEmbeddings
- embeddings_name: str = 'BytePairEmbeddings'#
- property embedding_length: int#
Returns the length of the embedding vector.
- extra_repr()View on GitHub#
Set the extra representation of the module.
To print customized extra information, you should re-implement this method in your own modules. Both single-line and multi-line strings are acceptable.
- classmethod from_params(params)View on GitHub#
- to_params()View on GitHub#
- class flair.embeddings.token.NILCEmbeddings(embeddings, model='skip', size=100)View on GitHub#
Bases:
WordEmbeddings
- embeddings_name: str = 'NILCEmbeddings'#
- classmethod from_params(params)View on GitHub#
- Return type: