Train a text classifier#

This tutorial shows you how to train your own text classifier models with Flair. For instance, you could train your own sentiment analysis model, or offensive language detection model.

Training a text classification model with transformers#

For text classification, you reach state-of-the-art scores by fine-tuning a transformer.

Training a model is easy: load the appropriate corpus, make a label dictionary, then fine-tune a TextClassifier model using the ModelTrainer.fine_tune() method. See the example script below:

from flair.data import Corpus
from flair.datasets import TREC_6
from flair.embeddings import TransformerDocumentEmbeddings
from flair.models import TextClassifier
from flair.trainers import ModelTrainer

# 1. get the corpus
corpus: Corpus = TREC_6()

# 2. what label do we want to predict?
label_type = 'question_class'

# 3. create the label dictionary
label_dict = corpus.make_label_dictionary(label_type=label_type)

# 4. initialize transformer document embeddings (many models are available)
document_embeddings = TransformerDocumentEmbeddings('distilbert-base-uncased', fine_tune=True)

# 5. create the text classifier
classifier = TextClassifier(document_embeddings, label_dictionary=label_dict, label_type=label_type)

# 6. initialize trainer
trainer = ModelTrainer(classifier, corpus)

# 7. run training with fine-tuning
trainer.fine_tune('resources/taggers/question-classification-with-transformer',
                  learning_rate=5.0e-5,
                  mini_batch_size=4,
                  max_epochs=10,
                  )

Once the model is trained you can load it to predict the class of new sentences. Just call the predict method of the model.

classifier = TextClassifier.load('resources/taggers/question-classification-with-transformer/final-model.pt')

# create example sentence
sentence = Sentence('Who built the Eiffel Tower ?')

# predict class and print
classifier.predict(sentence)

print(sentence.labels)

Next#

Next, learn how to train an entity linker.