flair.nn.LabelVerbalizerDecoder#
- class flair.nn.LabelVerbalizerDecoder(label_embedding, label_dictionary)View on GitHub#
Bases:
ModuleA class for decoding labels using the idea of siamese networks / bi-encoders. This can be used for all classification tasks in flair.
- Parameters:
label_encoder (flair.embeddings.TokenEmbeddings) – The label encoder used to encode the labels into an embedding.
label_dictionary (flair.data.Dictionary) – The label dictionary containing the mapping between labels and indices.
- label_encoder#
The label encoder used to encode the labels into an embedding.
- Type:
flair.embeddings.TokenEmbeddings
- label_dictionary#
The label dictionary containing the mapping between labels and indices.
- Type:
- forward(self, label_embeddings
torch.Tensor, context_embeddings: torch.Tensor) -> torch.Tensor: Takes the label embeddings and context embeddings as input and returns a tensor of label scores.
Examples
label_dictionary = corpus.make_label_dictionary(“ner”) label_encoder = TransformerWordEmbeddings(‘bert-base-ucnased’) label_verbalizer_decoder = LabelVerbalizerDecoder(label_encoder, label_dictionary)
- __init__(label_embedding, label_dictionary)View on GitHub#
Initialize internal Module state, shared by both nn.Module and ScriptModule.
Methods
__init__(label_embedding, label_dictionary)Initialize internal Module state, shared by both nn.Module and ScriptModule.
add_module(name, module)Add a child module to the current module.
apply(fn)Apply
fnrecursively to every submodule (as returned by.children()) as well as self.bfloat16()Casts all floating point parameters and buffers to
bfloat16datatype.buffers([recurse])Return an iterator over module buffers.
children()Return an iterator over immediate children modules.
compile(*args, **kwargs)Compile this Module's forward using
torch.compile().cpu()Move all model parameters and buffers to the CPU.
cuda([device])Move all model parameters and buffers to the GPU.
double()Casts all floating point parameters and buffers to
doubledatatype.eval()Set the module in evaluation mode.
extra_repr()Return the extra representation of the module.
float()Casts all floating point parameters and buffers to
floatdatatype.forward(inputs)Forward pass of the label verbalizer decoder.
get_buffer(target)Return the buffer given by
targetif it exists, otherwise throw an error.get_extra_state()Return any extra state to include in the module's state_dict.
get_parameter(target)Return the parameter given by
targetif it exists, otherwise throw an error.get_submodule(target)Return the submodule given by
targetif it exists, otherwise throw an error.half()Casts all floating point parameters and buffers to
halfdatatype.ipu([device])Move all model parameters and buffers to the IPU.
load_state_dict(state_dict[, strict, assign])Copy parameters and buffers from
state_dictinto this module and its descendants.modules()Return an iterator over all modules in the network.
mtia([device])Move all model parameters and buffers to the MTIA.
named_buffers([prefix, recurse, ...])Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
named_children()Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
named_modules([memo, prefix, remove_duplicate])Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
named_parameters([prefix, recurse, ...])Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
parameters([recurse])Return an iterator over module parameters.
register_backward_hook(hook)Register a backward hook on the module.
register_buffer(name, tensor[, persistent])Add a buffer to the module.
register_forward_hook(hook, *[, prepend, ...])Register a forward hook on the module.
register_forward_pre_hook(hook, *[, ...])Register a forward pre-hook on the module.
register_full_backward_hook(hook[, prepend])Register a backward hook on the module.
register_full_backward_pre_hook(hook[, prepend])Register a backward pre-hook on the module.
register_load_state_dict_post_hook(hook)Register a post-hook to be run after module's
load_state_dict()is called.register_load_state_dict_pre_hook(hook)Register a pre-hook to be run before module's
load_state_dict()is called.register_module(name, module)Alias for
add_module().register_parameter(name, param)Add a parameter to the module.
register_state_dict_post_hook(hook)Register a post-hook for the
state_dict()method.register_state_dict_pre_hook(hook)Register a pre-hook for the
state_dict()method.requires_grad_([requires_grad])Change if autograd should record operations on parameters in this module.
set_extra_state(state)Set extra state contained in the loaded state_dict.
set_submodule(target, module)Set the submodule given by
targetif it exists, otherwise throw an error.share_memory()See
torch.Tensor.share_memory_().state_dict(*args[, destination, prefix, ...])Return a dictionary containing references to the whole state of the module.
to(*args, **kwargs)Move and/or cast the parameters and buffers.
to_empty(*, device[, recurse])Move the parameters and buffers to the specified device without copying storage.
train([mode])Set the module in training mode.
type(dst_type)Casts all parameters and buffers to
dst_type.verbalize_labels(label_dictionary)Takes a label dictionary and returns a list of sentences with verbalized labels.
xpu([device])Move all model parameters and buffers to the XPU.
zero_grad([set_to_none])Reset gradients of all model parameters.
Attributes
T_destinationcall_super_initdump_patchestraining- static verbalize_labels(label_dictionary)View on GitHub#
Takes a label dictionary and returns a list of sentences with verbalized labels.
- Parameters:
label_dictionary (flair.data.Dictionary) – The label dictionary to verbalize.
- Return type:
list[Sentence]- Returns:
A list of sentences with verbalized labels.
Examples
label_dictionary = corpus.make_label_dictionary(“ner”) verbalized_labels = LabelVerbalizerDecoder.verbalize_labels(label_dictionary) print(verbalized_labels) [Sentence: “begin person”, Sentence: “inside person”, Sentence: “end person”, Sentence: “single org”, …]
- forward(inputs)View on GitHub#
Forward pass of the label verbalizer decoder.
- Parameters:
inputs (torch.Tensor) – The input tensor.
- Return type:
Tensor- Returns:
The scores of the decoder.
- Raises:
RuntimeError – If an unknown decoding type is specified.