flair.models.TextPairRegressor#
- class flair.models.TextPairRegressor(embeddings, label_type, embed_separately=False, dropout=0.0, locked_dropout=0.0, word_dropout=0.0, decoder=None)View on GitHub#
Bases:
Model
[DataPair
[Sentence
,Sentence
]],ReduceTransformerVocabMixin
Text Pair Regression Model for tasks such as Semantic Textual Similarity Benchmark.
The model takes document embeddings and puts resulting text representation(s) into a linear layer to get the score. We provide two ways to embed the DataPairs: Either by embedding both DataPoints and concatenating the resulting vectors (“embed_separately=True”) or by concatenating the DataPoints and embedding the resulting vector (“embed_separately=False”).
- __init__(embeddings, label_type, embed_separately=False, dropout=0.0, locked_dropout=0.0, word_dropout=0.0, decoder=None)View on GitHub#
Initialize the Text Pair Regression Model.
- Parameters:
label_type (
str
) – name of the labelembed_separately (
bool
) – if True, the sentence embeddings will be concatenated, if False both sentences will be combined and newly embedded.dropout (
float
) – dropoutlocked_dropout (
float
) – locked_dropoutword_dropout (
float
) – word_dropoutdecoder (
Optional
[Module
]) – if provided, a that specific layer will be used as decoder, otherwise a linear layer with random parameters will be created.embeddings (
DocumentEmbeddings
) – embeddings used to embed each data point
Methods
__init__
(embeddings, label_type[, ...])Initialize the Text Pair Regression Model.
add_module
(name, module)Add a child module to the current module.
apply
(fn)Apply
fn
recursively to every submodule (as returned by.children()
) as well as self.bfloat16
()Casts all floating point parameters and buffers to
bfloat16
datatype.buffers
([recurse])Return an iterator over module buffers.
children
()Return an iterator over immediate children modules.
compile
(*args, **kwargs)Compile this Module's forward using
torch.compile()
.cpu
()Move all model parameters and buffers to the CPU.
cuda
([device])Move all model parameters and buffers to the GPU.
double
()Casts all floating point parameters and buffers to
double
datatype.eval
()Set the module in evaluation mode.
evaluate
(data_points, gold_label_type[, ...])Evaluates the model.
extra_repr
()Set the extra representation of the module.
float
()Casts all floating point parameters and buffers to
float
datatype.forward
(*input)Define the computation performed at every call.
forward_loss
(pairs)Performs a forward pass and returns a loss tensor for backpropagation.
get_buffer
(target)Return the buffer given by
target
if it exists, otherwise throw an error.get_extra_state
()Return any extra state to include in the module's state_dict.
get_parameter
(target)Return the parameter given by
target
if it exists, otherwise throw an error.get_submodule
(target)Return the submodule given by
target
if it exists, otherwise throw an error.get_used_tokens
(corpus[, context_length, ...])half
()Casts all floating point parameters and buffers to
half
datatype.ipu
([device])Move all model parameters and buffers to the IPU.
load
(model_path)Loads a Flair model from the given file or state dictionary.
load_state_dict
(state_dict[, strict, assign])Copy parameters and buffers from
state_dict
into this module and its descendants.modules
()Return an iterator over all modules in the network.
mtia
([device])Move all model parameters and buffers to the MTIA.
named_buffers
([prefix, recurse, ...])Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
named_children
()Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
named_modules
([memo, prefix, remove_duplicate])Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
named_parameters
([prefix, recurse, ...])Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
parameters
([recurse])Return an iterator over module parameters.
predict
(pairs[, mini_batch_size, verbose, ...])print_model_card
()This method produces a log message that includes all recorded parameters the model was trained with.
register_backward_hook
(hook)Register a backward hook on the module.
register_buffer
(name, tensor[, persistent])Add a buffer to the module.
register_forward_hook
(hook, *[, prepend, ...])Register a forward hook on the module.
register_forward_pre_hook
(hook, *[, ...])Register a forward pre-hook on the module.
register_full_backward_hook
(hook[, prepend])Register a backward hook on the module.
register_full_backward_pre_hook
(hook[, prepend])Register a backward pre-hook on the module.
register_load_state_dict_post_hook
(hook)Register a post-hook to be run after module's
load_state_dict()
is called.register_load_state_dict_pre_hook
(hook)Register a pre-hook to be run before module's
load_state_dict()
is called.register_module
(name, module)Alias for
add_module()
.register_parameter
(name, param)Add a parameter to the module.
register_state_dict_post_hook
(hook)Register a post-hook for the
state_dict()
method.register_state_dict_pre_hook
(hook)Register a pre-hook for the
state_dict()
method.requires_grad_
([requires_grad])Change if autograd should record operations on parameters in this module.
save
(model_file[, checkpoint])Saves the current model to the provided file.
set_extra_state
(state)Set extra state contained in the loaded state_dict.
set_submodule
(target, module)Set the submodule given by
target
if it exists, otherwise throw an error.share_memory
()See
torch.Tensor.share_memory_()
.state_dict
(*args[, destination, prefix, ...])Return a dictionary containing references to the whole state of the module.
to
(*args, **kwargs)Move and/or cast the parameters and buffers.
to_empty
(*, device[, recurse])Move the parameters and buffers to the specified device without copying storage.
train
([mode])Set the module in training mode.
type
(dst_type)Casts all parameters and buffers to
dst_type
.xpu
([device])Move all model parameters and buffers to the XPU.
zero_grad
([set_to_none])Reset gradients of all model parameters.
Attributes
T_destination
call_super_init
dump_patches
Each model predicts labels of a certain type.
model_card
training
- property label_type#
Each model predicts labels of a certain type.
- get_used_tokens(corpus, context_length=0, respect_document_boundaries=True)View on GitHub#
- Return type:
Iterable
[list
[str
]]
- forward_loss(pairs)View on GitHub#
Performs a forward pass and returns a loss tensor for backpropagation.
Implement this to enable training.
- Return type:
tuple
[Tensor
,int
]
- predict(pairs, mini_batch_size=32, verbose=False, label_name=None, embedding_storage_mode='none')View on GitHub#
- evaluate(data_points, gold_label_type, out_path=None, embedding_storage_mode='none', mini_batch_size=32, main_evaluation_metric=('correlation', 'pearson'), exclude_labels=None, gold_label_dictionary=None, return_loss=True, **kwargs)View on GitHub#
Evaluates the model. Returns a Result object containing evaluation results and a loss value.
Implement this to enable evaluation.
- Parameters:
data_points (
Union
[list
[DataPair
[Sentence
,Sentence
]],Dataset
]) – The labeled data_points to evaluate.gold_label_type (
str
) – The label type indicating the gold labelsout_path (
Union
[str
,Path
,None
]) – Optional output path to store predictions.embedding_storage_mode (
Literal
['none'
,'cpu'
,'gpu'
]) – One of ‘none’, ‘cpu’ or ‘gpu’. ‘none’ means all embeddings are deleted and freshly recomputed, ‘cpu’ means all embeddings are stored on CPU, or ‘gpu’ means all embeddings are stored on GPUmini_batch_size (
int
) – The batch_size to use for predictions.main_evaluation_metric (
tuple
[str
,str
]) – Specify which metric to highlight as main_score.exclude_labels (
Optional
[list
[str
]]) – Specify classes that won’t be considered in evaluation.gold_label_dictionary (
Optional
[Dictionary
]) – Specify which classes should be considered, all other classes will be taken as <unk>.return_loss (
bool
) – Weather to additionally compute the loss on the data-points.**kwargs – Arguments that will be ignored.
- Return type:
Result
- Returns:
The evaluation results.