flair.embeddings.token.FlairEmbeddings#

class flair.embeddings.token.FlairEmbeddings(model, fine_tune=False, chars_per_chunk=512, with_whitespace=True, tokenized_lm=True, is_lower=False, name=None, has_decoder=False)View on GitHub#

Bases: TokenEmbeddings

Contextual string embeddings of words, as proposed in Akbik et al., 2018.

__init__(model, fine_tune=False, chars_per_chunk=512, with_whitespace=True, tokenized_lm=True, is_lower=False, name=None, has_decoder=False)View on GitHub#

Initializes contextual string embeddings using a character-level language model.

Parameters:
  • model – model string, one of ‘news-forward’, ‘news-backward’, ‘news-forward-fast’, ‘news-backward-fast’, ‘mix-forward’, ‘mix-backward’, ‘german-forward’, ‘german-backward’, ‘polish-backward’, ‘polish-forward’ depending on which character language model is desired.

  • fine_tune (bool) – if set to True, the gradient will propagate into the language model. This dramatically slows down training and often leads to overfitting, so use with caution.

  • chars_per_chunk (int) – max number of chars per rnn pass to control speed/memory tradeoff. Higher means faster but requires more memory. Lower means slower but less memory.

  • with_whitespace (bool) – If True, use hidden state after whitespace after word. If False, use hidden state at last character of word.

  • tokenized_lm (bool) – Whether this lm is tokenized. Default is True, but for LMs trained over unprocessed text False might be better.

  • has_decoder (bool) – Weather to load the decoder-head of the LanguageModel. This should only be true, if you intend to generate text.

  • is_lower (bool) – Whether this lm is trained on lower-cased data.

  • name (Optional[str]) – The name of the embeddings

Methods

__init__(model[, fine_tune, ...])

Initializes contextual string embeddings using a character-level language model.

add_module(name, module)

Add a child module to the current module.

apply(fn)

Apply fn recursively to every submodule (as returned by .children()) as well as self.

bfloat16()

Casts all floating point parameters and buffers to bfloat16 datatype.

buffers([recurse])

Return an iterator over module buffers.

children()

Return an iterator over immediate children modules.

compile(*args, **kwargs)

Compile this Module's forward using torch.compile().

cpu()

Move all model parameters and buffers to the CPU.

cuda([device])

Move all model parameters and buffers to the GPU.

double()

Casts all floating point parameters and buffers to double datatype.

embed(data_points)

Add embeddings to all words in a list of sentences.

eval()

Set the module in evaluation mode.

extra_repr()

Set the extra representation of the module.

float()

Casts all floating point parameters and buffers to float datatype.

forward(*input)

Define the computation performed at every call.

from_params(params)

get_buffer(target)

Return the buffer given by target if it exists, otherwise throw an error.

get_extra_state()

Return any extra state to include in the module's state_dict.

get_instance_parameters(locals)

get_names()

Returns a list of embedding names.

get_parameter(target)

Return the parameter given by target if it exists, otherwise throw an error.

get_submodule(target)

Return the submodule given by target if it exists, otherwise throw an error.

half()

Casts all floating point parameters and buffers to half datatype.

ipu([device])

Move all model parameters and buffers to the IPU.

load_embedding(params)

load_state_dict(state_dict[, strict, assign])

Copy parameters and buffers from state_dict into this module and its descendants.

modules()

Return an iterator over all modules in the network.

mtia([device])

Move all model parameters and buffers to the MTIA.

named_buffers([prefix, recurse, ...])

Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.

named_children()

Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.

named_modules([memo, prefix, remove_duplicate])

Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.

named_parameters([prefix, recurse, ...])

Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.

parameters([recurse])

Return an iterator over module parameters.

register_backward_hook(hook)

Register a backward hook on the module.

register_buffer(name, tensor[, persistent])

Add a buffer to the module.

register_forward_hook(hook, *[, prepend, ...])

Register a forward hook on the module.

register_forward_pre_hook(hook, *[, ...])

Register a forward pre-hook on the module.

register_full_backward_hook(hook[, prepend])

Register a backward hook on the module.

register_full_backward_pre_hook(hook[, prepend])

Register a backward pre-hook on the module.

register_load_state_dict_post_hook(hook)

Register a post-hook to be run after module's load_state_dict() is called.

register_load_state_dict_pre_hook(hook)

Register a pre-hook to be run before module's load_state_dict() is called.

register_module(name, module)

Alias for add_module().

register_parameter(name, param)

Add a parameter to the module.

register_state_dict_post_hook(hook)

Register a post-hook for the state_dict() method.

register_state_dict_pre_hook(hook)

Register a pre-hook for the state_dict() method.

requires_grad_([requires_grad])

Change if autograd should record operations on parameters in this module.

save_embeddings([use_state_dict])

set_extra_state(state)

Set extra state contained in the loaded state_dict.

set_submodule(target, module)

Set the submodule given by target if it exists, otherwise throw an error.

share_memory()

See torch.Tensor.share_memory_().

state_dict(*args[, destination, prefix, ...])

Return a dictionary containing references to the whole state of the module.

to(*args, **kwargs)

Move and/or cast the parameters and buffers.

to_empty(*, device[, recurse])

Move the parameters and buffers to the specified device without copying storage.

to_params()

train([mode])

Set the module in training mode.

type(dst_type)

Casts all parameters and buffers to dst_type.

xpu([device])

Move all model parameters and buffers to the XPU.

zero_grad([set_to_none])

Reset gradients of all model parameters.

Attributes

T_destination

call_super_init

dump_patches

embedding_length

Returns the length of the embedding vector.

embedding_type

embeddings_name

training

train(mode=True)View on GitHub#

Set the module in training mode.

This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g. Dropout, BatchNorm, etc.

Parameters:

mode (bool) – whether to set training mode (True) or evaluation mode (False). Default: True.

Returns:

self

Return type:

Module

property embedding_length: int#

Returns the length of the embedding vector.

to_params()View on GitHub#
classmethod from_params(params)View on GitHub#
embeddings_name: str = 'FlairEmbeddings'#