flair.datasets.text_text.OpusParallelCorpus#
- class flair.datasets.text_text.OpusParallelCorpus(dataset, l1, l2, use_tokenizer=True, max_tokens_per_doc=-1, max_chars_per_doc=-1, in_memory=True, **corpusargs)View on GitHub#
Bases:
ParallelTextCorpus
- __init__(dataset, l1, l2, use_tokenizer=True, max_tokens_per_doc=-1, max_chars_per_doc=-1, in_memory=True, **corpusargs)View on GitHub#
Instantiates a Parallel Corpus from OPUS.
see http://opus.nlpl.eu/ :type dataset:
str
:param dataset: Name of the dataset (one of “tatoeba”) :type l1:str
:param l1: Language code of first language in pair (“en”, “de”, etc.) :type l2:str
:param l2: Language code of second language in pair (“en”, “de”, etc.) :type use_tokenizer:bool
:param use_tokenizer: Whether or not to use in-built tokenizer :type max_tokens_per_doc: :param max_tokens_per_doc: If set, shortens sentences to this maximum number of tokens :type max_chars_per_doc: :param max_chars_per_doc: If set, shortens sentences to this maximum number of characters :type in_memory:bool
:param in_memory: If True, keeps dataset fully in memory
Methods
__init__
(dataset, l1, l2[, use_tokenizer, ...])Instantiates a Parallel Corpus from OPUS.
add_label_noise
(label_type, labels[, ...])Generates uniform label noise distribution in the chosen dataset split.
downsample
([percentage, downsample_train, ...])Randomly downsample the corpus to the given percentage (by removing data points).
filter_empty_sentences
()A method that filters all sentences consisting of 0 tokens.
filter_long_sentences
(max_charlength)A method that filters all sentences for which the plain text is longer than a specified number of characters.
get_all_sentences
()Returns all sentences (spanning all three splits) in the
Corpus
.get_label_distribution
()Counts occurrences of each label in the corpus and returns them as a dictionary object.
is_in_memory
()make_label_dictionary
(label_type[, ...])Creates a dictionary of all labels assigned to the sentences in the corpus.
make_tag_dictionary
(tag_type)Create a tag dictionary of a given label type.
make_vocab_dictionary
([max_tokens, min_freq])Creates a
Dictionary
of all tokens contained in the corpus.obtain_statistics
([label_type, pretty_print])Print statistics about the corpus, including the length of the sentences and the labels in the corpus.
Attributes
dev
The dev split as a
torch.utils.data.Dataset
object.test
The test split as a
torch.utils.data.Dataset
object.train
The training split as a
torch.utils.data.Dataset
object.