flair.datasets.sequence_labeling.NER_NOISEBENCH#

class flair.datasets.sequence_labeling.NER_NOISEBENCH(noise='clean', base_path=None, in_memory=True, **corpusargs)View on GitHub#

Bases: ColumnCorpus

__init__(noise='clean', base_path=None, in_memory=True, **corpusargs)View on GitHub#

Initialize the NoiseBench corpus.

Parameters:
  • noise (string) – Chooses the labelset for the data. clean (default): Clean labels crowd,crowdbest,expert,distant,weak,llm : Different kinds of noisy labelsets (details: …)

  • base_path (Optional[Union[str, Path]]) – Path to the data. Default is None, meaning the corpus gets automatically downloaded and saved. You can override this by passing a path to a directory containing the unprocessed files but typically this should not be necessary.

  • in_memory (bool) – If True the dataset is kept in memory achieving speedups in training.

  • **corpusargs – The arguments propagated to :meth:’flair.datasets.ColumnCorpus.__init__’.

Methods

__init__([noise, base_path, in_memory])

Initialize the NoiseBench corpus.

add_label_noise(label_type, labels[, ...])

Generates uniform label noise distribution in the chosen dataset split.

downsample([percentage, downsample_train, ...])

Randomly downsample the corpus to the given percentage (by removing data points).

filter_empty_sentences()

A method that filters all sentences consisting of 0 tokens.

filter_long_sentences(max_charlength)

A method that filters all sentences for which the plain text is longer than a specified number of characters.

get_all_sentences()

Returns all sentences (spanning all three splits) in the Corpus.

get_label_distribution()

Counts occurrences of each label in the corpus and returns them as a dictionary object.

make_label_dictionary(label_type[, ...])

Creates a dictionary of all labels assigned to the sentences in the corpus.

make_tag_dictionary(tag_type)

Create a tag dictionary of a given label type.

make_vocab_dictionary([max_tokens, min_freq])

Creates a Dictionary of all tokens contained in the corpus.

obtain_statistics([label_type, pretty_print])

Print statistics about the corpus, including the length of the sentences and the labels in the corpus.

Attributes

SAVE_TRAINDEV_FILE

dev

The dev split as a torch.utils.data.Dataset object.

label_url

test

The test split as a torch.utils.data.Dataset object.

train

The training split as a torch.utils.data.Dataset object.

label_url = 'https://raw.githubusercontent.com/elenamer/NoiseBench/main/data/annotations/'#
SAVE_TRAINDEV_FILE = False#