flair.datasets.sequence_labeling.NER_MULTI_WIKINER#
- class flair.datasets.sequence_labeling.NER_MULTI_WIKINER(languages='en', base_path=None, in_memory=False, **corpusargs)View on GitHub#
Bases:
MultiCorpus- __init__(languages='en', base_path=None, in_memory=False, **corpusargs)View on GitHub#
Initializes a MultiCorpus by concatenating splits from individual corpora.
- Parameters:
corpora (list[Corpus]) – List of Corpus objects to combine.
task_ids (Optional[list[str]], optional) – List of string IDs for each corpus/task. If None, generates default IDs like “Task_0”, “Task_1”. Defaults to None.
name (str, optional) – Name for the combined corpus. Defaults to “multicorpus”.
**corpusargs – Additional arguments passed to the parent Corpus constructor (e.g., sample_missing_splits).
Methods
__init__([languages, base_path, in_memory])Initializes a MultiCorpus by concatenating splits from individual corpora.
add_label_noise(label_type, labels[, ...])Adds artificial label noise to a specified split (in-place).
downsample([percentage, downsample_train, ...])Randomly downsample the corpus to the given percentage (by removing data points).
filter_empty_sentences()A method that filters all sentences consisting of 0 tokens.
filter_long_sentences(max_charlength)A method that filters all sentences for which the plain text is longer than a specified number of characters.
get_all_sentences()Returns all sentences (spanning all three splits) in the
Corpus.get_label_distribution()Counts occurrences of each label in the corpus and returns them as a dictionary object.
make_label_dictionary(label_type[, ...])Creates a Dictionary for a specific label type from the corpus.
make_tag_dictionary(tag_type)DEPRECATED: Creates tag dictionary ensuring 'O', '<START>', '<STOP>'.
make_vocab_dictionary([max_tokens, min_freq])Creates a
Dictionaryof all tokens contained in the corpus.obtain_statistics([label_type, pretty_print])Print statistics about the corpus, including the length of the sentences and the labels in the corpus.
Attributes
corpus_tokenizerReturns the custom tokenizer provided during corpus initialization for retokenization, if any.
devThe dev split as a
torch.utils.data.Datasetobject.testThe test split as a
torch.utils.data.Datasetobject.trainThe training split as a
torch.utils.data.Datasetobject.