flair.datasets.sequence_labeling.NER_MULTI_CONER_V2#

class flair.datasets.sequence_labeling.NER_MULTI_CONER_V2(task='multi', base_path=None, in_memory=True, use_dev_as_test=True, **corpusargs)View on GitHub#

Bases: MultiFileColumnCorpus

__init__(task='multi', base_path=None, in_memory=True, use_dev_as_test=True, **corpusargs)View on GitHub#

Initialize the MultiCoNer V2 corpus for the Semeval2023 workshop.

This is only possible if you’ve applied and downloaded it to your machine. Apply for the corpus from here https://multiconer.github.io/dataset and unpack the .zip file’s content into a folder called ‘ner_multi_coner_v2’. Then set the base_path parameter in the constructor to the path to the parent directory where the ner_multi_coner_v2 folder resides. You can also create the multiconer in the {FLAIR_CACHE_ROOT}/datasets folder to leave the path empty. :type base_path: Union[str, Path, None] :param base_path: Path to the ner_multi_coner_v2 corpus (i.e. ‘ner_multi_coner_v2’ folder) on your machine POS tags or chunks respectively :type in_memory: bool :param in_memory: If True, keeps dataset in memory giving speedups in training. :type use_dev_as_test: bool :param use_dev_as_test: If True, it uses the dev set as test set and samples random training data for a dev split. :type task: str :param task: either ‘multi’, ‘code-switch’, or the language code for one of the mono tasks.

Methods

__init__([task, base_path, in_memory, ...])

Initialize the MultiCoNer V2 corpus for the Semeval2023 workshop.

add_label_noise(label_type, labels[, ...])

Generates uniform label noise distribution in the chosen dataset split.

downsample([percentage, downsample_train, ...])

Randomly downsample the corpus to the given percentage (by removing data points).

filter_empty_sentences()

A method that filters all sentences consisting of 0 tokens.

filter_long_sentences(max_charlength)

A method that filters all sentences for which the plain text is longer than a specified number of characters.

get_all_sentences()

Returns all sentences (spanning all three splits) in the Corpus.

get_label_distribution()

Counts occurrences of each label in the corpus and returns them as a dictionary object.

make_label_dictionary(label_type[, ...])

Creates a dictionary of all labels assigned to the sentences in the corpus.

make_tag_dictionary(tag_type)

Create a tag dictionary of a given label type.

make_vocab_dictionary([max_tokens, min_freq])

Creates a Dictionary of all tokens contained in the corpus.

obtain_statistics([label_type, pretty_print])

Print statistics about the corpus, including the length of the sentences and the labels in the corpus.

Attributes

dev

The dev split as a torch.utils.data.Dataset object.

test

The test split as a torch.utils.data.Dataset object.

train

The training split as a torch.utils.data.Dataset object.