flair.datasets.document_classification.TREC_6#
- class flair.datasets.document_classification.TREC_6(base_path=None, tokenizer=<flair.tokenization.SpaceTokenizer object>, memory_mode='full', **corpusargs)View on GitHub#
Bases:
ClassificationCorpusThe TREC Question Classification Corpus, classifying questions into 6 coarse-grained answer types.
- __init__(base_path=None, tokenizer=<flair.tokenization.SpaceTokenizer object>, memory_mode='full', **corpusargs)View on GitHub#
Instantiates TREC Question Classification Corpus with 6 classes.
- Parameters:
base_path (
Union[str,Path,None]) – Provide this only if you store the TREC corpus in a specific folder, otherwise use default.tokenizer (
Union[bool,Tokenizer]) – Custom tokenizer to use (default is SpaceTokenizer)memory_mode – Set to ‘full’ by default since this is a small corpus. Can also be ‘partial’ or ‘none’.
corpusargs – Other args for ClassificationCorpus.
Methods
__init__([base_path, tokenizer, memory_mode])Instantiates TREC Question Classification Corpus with 6 classes.
add_label_noise(label_type, labels[, ...])Adds artificial label noise to a specified split (in-place).
downsample([percentage, downsample_train, ...])Randomly downsample the corpus to the given percentage (by removing data points).
filter_empty_sentences()A method that filters all sentences consisting of 0 tokens.
filter_long_sentences(max_charlength)A method that filters all sentences for which the plain text is longer than a specified number of characters.
get_all_sentences()Returns all sentences (spanning all three splits) in the
Corpus.get_label_distribution()Counts occurrences of each label in the corpus and returns them as a dictionary object.
make_label_dictionary(label_type[, ...])Creates a Dictionary for a specific label type from the corpus.
make_tag_dictionary(tag_type)DEPRECATED: Creates tag dictionary ensuring 'O', '<START>', '<STOP>'.
make_vocab_dictionary([max_tokens, min_freq])Creates a
Dictionaryof all tokens contained in the corpus.obtain_statistics([label_type, pretty_print])Print statistics about the corpus, including the length of the sentences and the labels in the corpus.
Attributes
corpus_tokenizerReturns the custom tokenizer provided during corpus initialization for retokenization, if any.
devThe dev split as a
torch.utils.data.Datasetobject.testThe test split as a
torch.utils.data.Datasetobject.trainThe training split as a
torch.utils.data.Datasetobject.