flair.datasets.document_classification.NEWSGROUPS#
- class flair.datasets.document_classification.NEWSGROUPS(base_path=None, tokenizer=<flair.tokenization.SegtokTokenizer object>, memory_mode='partial', **corpusargs)View on GitHub#
Bases:
ClassificationCorpus
20 newsgroups corpus, classifying news items into one of 20 categories.
Downloaded from http://qwone.com/~jason/20Newsgroups
Each data point is a full news article so documents may be very long.
- __init__(base_path=None, tokenizer=<flair.tokenization.SegtokTokenizer object>, memory_mode='partial', **corpusargs)View on GitHub#
Instantiates 20 newsgroups corpus.
- Parameters:
base_path (
Union
[str
,Path
,None
]) – Provide this only if you store the IMDB corpus in a specific folder, otherwise use default.tokenizer (
Tokenizer
) – Custom tokenizer to use (default is SegtokTokenizer)memory_mode (
str
) – Set to ‘partial’ because this is a big corpus, but you can also set to ‘full’ for faster processing or ‘none’ for less memory.corpusargs – Other args for ClassificationCorpus.
Methods
__init__
([base_path, tokenizer, memory_mode])Instantiates 20 newsgroups corpus.
add_label_noise
(label_type, labels[, ...])Generates uniform label noise distribution in the chosen dataset split.
downsample
([percentage, downsample_train, ...])Randomly downsample the corpus to the given percentage (by removing data points).
filter_empty_sentences
()A method that filters all sentences consisting of 0 tokens.
filter_long_sentences
(max_charlength)A method that filters all sentences for which the plain text is longer than a specified number of characters.
get_all_sentences
()Returns all sentences (spanning all three splits) in the
Corpus
.get_label_distribution
()Counts occurrences of each label in the corpus and returns them as a dictionary object.
make_label_dictionary
(label_type[, ...])Creates a dictionary of all labels assigned to the sentences in the corpus.
make_tag_dictionary
(tag_type)Create a tag dictionary of a given label type.
make_vocab_dictionary
([max_tokens, min_freq])Creates a
Dictionary
of all tokens contained in the corpus.obtain_statistics
([label_type, pretty_print])Print statistics about the corpus, including the length of the sentences and the labels in the corpus.
Attributes
dev
The dev split as a
torch.utils.data.Dataset
object.test
The test split as a
torch.utils.data.Dataset
object.train
The training split as a
torch.utils.data.Dataset
object.